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ABSTRACT

In this paper, we present closed-form formulas for the lift and moment coefficients of a lifting surface
in two-dimensional, unsteady, compressible, subsonic flow utilizing a newly developed explicit
analytical solution of the Possio equation. Numerical calculations are consistent with previous numerical
tables based on series expansions or ad hoc numerical schemes. More importantly, these formulas lend
themselves readily to flutter analysis, compared with the tedious table-look-up schemes currently in use.

NOMENCLATURE

location of the elastic axis

speed of sound, ft/sec

A doublet intensity

b half chord, ft
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D determinant of a linear algebraic equation
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lift

coefficient of lift due to plunge motion

coefficient of lift due to pitch motion

m mass per unit span, slug/ft

M Mach number = 

M moment

coefficient of moment due to plunge motion

coefficient of moment due to pitch motion

p function

P-G transformation Prandtl-Glauert transformation

q function

function

Re the real part of a complex number

linear functional

static mass moment per unit length about the elastic axis, slug/ft/ft

time

U free-stream velocity, ft/sec

downwash, ft/sec
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, scaled reduced frequency
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dummy variable

velocity potential

dummy variable

frequency of oscillation, rad/sec

1. INTRODUCTION

The pressure distribution on a lifting surface in unsteady aerodynamics and the lift/moment
coefficients deduced therefrom are essential for many aerodynamic/aeroelastic calculations including
flutter analysis. A central role is played in this theory by the Possio (integral) equation, relating the
normal velocity of the fluid (downwash) to the pressure distribution of a lifting surface in two-
dimensional, oscillatory, subsonic compressible flow, derived by Possio.1 Despite the effort of many
aerodynamicists and aeroelasticians, however, no explicit solution has so far been found. Dietze2 and
later Fettis3 and others turned to creating tables of lift and moment coefficients based on various
numerical approximations. The lack of explicit formulas for the aerodynamic coefficients, in turn,
resulted in making the aeroelastic calculations a tedious iterative process. Haskind,4 Reissner,5 and
Timman, et al.,6 formulated the two-dimensional flow problem in elliptic coordinates and this resulted in
a series expansion in terms of Mathieu functions and also developed aerodynamic coefficient tables. By
the 1950’s, the aerodynamic theory had extended to the more general three-dimensional lifting surface
problem. Watkins, Runyan and Woolston7 used series expansions which led to a numerical scheme
known as the Kernel Method (KFM). In the late 1960’s, Albano and Rodden8 developed a numerical
scheme called the “doublet-lattice method” which extends to even more complicated nonplanar
configurations, but without theoretical justification.8, 9 As the flow problem became more complicated it
became even more difficult to combine the structure with the aerodynamics necessary for the aeroelastic
problem.

Recently, Balakrishnan10 derived an explicit solution to the Possio equation, which is accurate to the

order of . This approximation is certainly valid for , above which the linearized

theory is generally conceded as no longer valid. Figure 1 shows that  is well below one for

. In this paper we derive explicit formulas for the lift and moment for any two-dimensional

lifting surface in subsonic compressible flow, based on the Balakrishnan solution.

We begin in section 2 with the Laplace transform version of the Possio equation and its solution
derived by Balakrishnan.10 In section 3, we proceed to obtain closed-form formulas for the lift and
moment. Numerical calculations are given in section 4, which are compared with results obtained by
previous authors,2, 3, 6, 11 showing acceptable agreement.   In section 5 we illustrate the ease with which
the lift and moment formulas are applied to flutter analysis as compared with table-look-up schemes, by
considering a standard model for wings with large aspect ratio. Concluding remarks are in the final
section.
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Figure 1. Plot of  and .

2. SOLUTION OF POSSIO EQUATION – LAPLACE TRANSFORM VERSION

In this section we present the Laplace transform version of the Possio equation and its solution,
referring to reference 10 for more detailed analysis. To clarify the terminology, we begin with the two-
dimensional field equations for the velocity potential in (linearized) compressive flow: 

(2.1)

subject to the boundary conditions:

i) Flow Tangency 

; (2.2)

ii)  Kutta-Joukowski

; (2.3)

iii) and the usual vanishing far-field conditions.
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A “particular” solution of (2.1), which satisfies iii) and ii) for  is given as (see ref. 12)

. (2.4)

It is a “particular” solution in that the initial conditions are assumed to be:

,

which are necessary for the Laplace transform theory. To satisfy the flow-tangency condition, we
substitute this solution into (2.2), and must obtain

. (2.5)

Next, we take the Laplace transform on both sides by defining

; , .

We now have:

(2.6)

This leads to (see ref. 10) the “Laplace transform version” of the Possio equation,

, (2.7)
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where

 is analytic in  for the entire complex plane except for the “branch cut” along the negative
real axis, due to the essential singularity of the modified Bessel functions.   Hence, we can set ,
yielding the usual Possio equation for “oscillatory motion.” 1, 13

The explicit solution to (2.7) developed by Balakrishnan in ref. 10 is given by

(2.8)

where

(2.8a)
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are readily calculated.  Let

Then from (2.8a) we obtain the linear equations:

(2.9)

The determinant is

A plot of D as a function of the reduced frequency is given in figure 2 for a family of values of 
showing it is actually positive for these values, so that (2.9) has a unique solution.

Figure 2. The determinant  as a function of the reduced frequency (k) for various Mach numbers.

For the incompressible case, the Balakrishnan solution simplifies this and we obtain
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and

, (2.11)

where

.

Plugging (2.11) into (2.10), we have

, (2.12)

which agrees with the known (e.g. Küssner-Schwarz14) solution for “oscillatory motion.”

3. LIFT AND MOMENT CALCULATIONS
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Similarly we have for the moment about the axis  as,

(3.2)

where

Hence to calculate lift and moment we need to calculate two more constants namely,

We have again from (2.8a),
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where

(3.3)

and

.

Equation (3.3) is for a general class of lifting surfaces, in that the downwash function is arbitrary.  For
a typical section we can express the downwash as

or

(3.4)

We ignore the initial conditions here since we will be interested only in the stability of the wing. We
could also easily include control surfaces, but for simplicity we will not do so.
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where

(3.6)

Smilg and Wassermann15 defined the aerodynamic coefficients differently, they had
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Here the coefficients are given by:

(3.7)

For , we have

Note: In the asymptotic expansions of the modified Bessel functions, we suppressed the dependence of 
on the reduced frequency . The dependence is such that the higher the value of , the smaller the
value of M will need to be. However, for most aeroelastic calculations, we are only interested in the first
few modes where  is . In fact we have

. (3.8)

4. COMPARISON WITH PREVIOUS RESULTS

The definitions of the lift and moment coefficients in (3.6) are similar to those adopted by Possio,
Dietze, and Timman. Timman’s lift and moment coefficients are defined for rotation about the midchord,

, hence his . These moment coefficients are different from equation (3.6) and Dietze’s values.
For , figures 3–6 compare the aerodynamic coefficients in equation (3.6) with their
corresponding values found in Dietze and Timman. We also included the Prandtl-Glauert transformation
of (3.6), i.e. all coefficients are divided by . As , the Prandtl-Glauert version will reach the
correct steady state value. Upon close inspection we found that Dietze’s  and  were missing 
and  respectively.   When these errors are taken into account, our results show good agreement
with Dietze’s values. The differences between Dietze’s values and ours are all within 10 percent. With
the adjustment of the rotation axis, the differences between Timman’s values and ours are also within
10 percent, except at high reduced frequencies. At these high reduced frequencies Fettis found that
Timman’s values are erroneous.16 As for the moment coefficients, again Dietze left out some terms there
as well. When these errors are taken into account the difference between Dietze’s numbers and ours are
again within 10 percent (not shown). 
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Figure 3. Lift coefficient due to plunge motion as a function of reduced frequency  with 
(real part).

Figure 4. Lift coefficient due to plunge motion as a function of reduced frequency  with 
(imaginary part).
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Figure 5. Lift coefficient due to pitch motion as a function of reduced frequency  with 
(real part).

Figure 6. Lift coefficient due to pitch motion as a function of reduced frequency  with 
(imaginary part).
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For the case where  figures 7–10 compare results from equation (3.7) with those that
belong to Fettis2 and Blanch11 whenever they follow Smilg and Wassermann notations. Blanch
employed Reissner’s method to calculate the aerodynamic coefficients, whereas Fettis approximated
Possio’s equation in obtaining his results. It is uncanny that the values are within a few hundredths of
each other. Our numbers compare reasonably well with theirs for  and  shown in
figures 8 and 9 respectively. The differences are close to 15 to 20 percent. However, for  and

, there is nearly a 60-percent difference between our results and theirs. For this particular Mach
number Fettis’ values agreed with Dietze’s when he took into account Dietze’s missing factors
mentioned earlier.   There were some difficulties in the convergence of Dietze’s iteration scheme for such
a high Mach number.   Fettis bypassed these difficulties by approximating Possio’s integral equation with
a polynomial. He expanded the kernel function in a power series of  after he had removed the
incompressible part. On the other hand, Blanch followed Reissner’s method of expansions in terms of the
Mathieu functions.   Hence, their approximations are no longer valid for large Mach numbers and large
reduced frequencies. Neither Fettis nor Blanch indicated how many terms should be taken in their
expansions or what the limiting values are for the Mach number or the reduced frequency in their
approximations. Our results are also approximations, but they are analytic rather than numerical
approximations. If our approximations are good enough for  and  they should be good
enough for  and  as well. The differences are even greater in the moment coefficients.
These differences are 60-percent and beyond (not shown). Just as with lift coefficients, we simply cannot
conclude which approximation is better. From (3.7) it follows that

which is a formula derived by Fettis in reference 15. This relation is exact and was derived analytically
based solely on the kinematics of the airfoil and the existence and uniqueness of the solution to the Possio
equation. Overall, for  and  our approximations are in good agreement with previous
tabulated values. 

Figure 7. Lift coefficient due to plunge motion as a function of reduced frequency  with 
(real part).
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Figure 8. Lift coefficient due to plunge motion as a function of reduced frequency  with 
(imaginary part).

k( ) M 0.7=

Figure 9. Lift coefficient due to pitch motion as a function of reduced frequency  with 
(real part). 
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Figure 10. Lift coefficient due to pitch motion as a function of reduced frequency  with 
(imaginary part).

5. APPLICATION TO FLUTTER ANALYSIS

 A main motivation for calculating the lift and moment in unsteady aerodynamics is for use in
aeroelastic stability analysis—flutter speed calculations. In this section, we calculate the “aeroelastic
modes” (see reference 13, p. 550) of a wing with a large aspect ratio and demonstrate the simplicity and
the ease of utility of the explicit lift and moment formulas found in section 3. We will also see the need
for the Laplace transforms of lift and moment as opposed to the “oscillatory motion” values when
calculating these “aeroelastic modes.”

 We illustrate this with the continuum model of Goland17 for bending-torsion flutter for a uniform
cantilever wing. The flutter speed has been calculated in references 17 and 18 for the incompressible
case. Here we shall use our formulas to calculate the aerodynamic loading in the subsonic compressible
case. 

 The dynamic equation for the wing is given as

(5.1)
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 with boundary conditions of,

 Goland used the lift and moment of an infinitely spanned wing, but in actuality due to their dependence
on h and , the lift and moments in (5.1) do depend on y. For a wing with a sufficiently large aspect ratio,
one can argue that the lift and moment can be written as the sum of the lift and moment of the infinitely
spanned wing with a correction term that goes to zero as .19

 Therefore, we proceed by taking the Laplace transform of equation (5.1) and denote the derivative
with respect to y by superprime. We then have 

(5.2)

 with boundary conditions:

.

 These equations yield the “aeroelastic” modes. The main point here is that we need 
given by (3.6), (  is not purely imaginary). We may then proceed to calculate the real part of the
aeroelastic mode corresponding to the first torsion mode, following reference 18, where the only
difference is that the aerodynamics is restricted to the incompressible case, as in Goland. Figures 11
and 12 plot the real part of  as a function of U, for the compressible as well as the incompressible case,
at two different elevations. The flutter speed differs little from the incompressible case prior to flutter,
even though the damping is higher initially. Tables 1 and 2 summarize the wing parameters and the
flutter analysis. All of the reduced frequencies and Mach numbers at flutter condition are well within the
range of validity of our approximation. 
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Figure 11.  as a function of air speed: Goland case at sea level.

Figure 12.  as a function of air speed: Goland case at 20,000 ft.
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Table 1. Parameters of the wing: Goland case.

Parameters Values

m 0.746 slug/ft

Sy 0.447 slug/ft/ft

Iy 1.943 slug/ft2/ft

EI 23.6 × 106 lb ft

GJ 2.39 × 106 lb ft

a –1/3

l 20 ft

b 3 ft

Table 2. Flutter analysis of the wing: Goland case.

Sea level 20 K ft above sea level

Uf (ft/sec) kf Mf Uf (ft/sec) kf Mf

Incompressible 447 0.47 ∞ 574 0.36 ∞
Compressible 446 0.46 0.40 574 0.35 0.55
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6. CONCLUDING REMARKS

For application to aeroelastic analysis in the subsonic compressible regime, the current reliance on
tabulated calculations of aerodynamic influence coefficients is cumbersome. In this paper, closed-form
formulas of lift and moment coefficients are obtained based on the recent solution of the Possio equation
by Balakrishnan. 

For a Mach number less than 0.7 and reduced frequencies less than one, the closed-form formulas of
lift and moment coefficients derived in this paper are within 10 percent of previous numerical results.
As the Mach number gets closer to 0.7 and beyond, all methods of approximation fail. However, for such
a high Mach number the aerodynamic flow is close to the transonic regime.

Numerical calculations are shown to be consistent with extant work. The ease of use of these
formulas is demonstrated in the flutter analysis illustrated. No longer is there a need for “table look up” of
aerodynamic coefficients in an iterative process of root finding.
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